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Summary. This manuscript introduces a new approach for increasing the efficiency of auto-
matic differentiation (AD) computations for estimating the first order derivatives comprising
the Jacobian matrix of a complex large-scale computational model. The objective is to approx-
imate the entire Jacobian matrix with minimized computational and storage resources. This is
achieved by finding low rank approximations to a Jacobian matrix via the Efficient Subspace
Method (ESM). Low rank Jacobian matrices arise in many of today’s important scientific and
engineering problems, e.g. nuclear reactor calculations, weather climate modeling, geophysi-
cal applications, etc. A low rank approximation replaces the original Jacobian matrix J (whose
size is dictated by the size of the input and output data streams) with matrices of much smaller
dimensions (determined by the numerical rank of the Jacobian matrix). This process reveals
the rank of the Jacobian matrix and can be obtained by ESM via a series of r randomized
matrix-vector products of the form: Jq, and J7 @ which can be evaluated by the AD forward
and reverse modes, respectively.
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1 Introduction

AD has arisen as a powerful tool that can potentially meet the need for efficient and accurate
evaluation of sensitivity information, i.e. derivatives, for complex engineering models. Deriva-
tive information is required for a wide range of engineering and research-oriented tasks, e.g.
design optimization, code-based uncertainty propagation, and data assimilation.

The functionality of AD depends to a large extent on the complexity of the engineering
model to be differentiated. With the startling growth in computer power, and the implemen-
tation of efficient computer algorithms, the application of AD to realistic engineering models
has been made feasible [5, 9]. In many of today’s complex engineering systems, e.g. model-
ing of nuclear phenomena, weather climate modeling, however, it is safe to say that most of
the associated computational models, either deterministic and/or probabilistic, operate at the
limit of the computing capacity of the state-of-the-art computing resources. Therefore, it is
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paramount to increase the efficiency of AD algorithms to a level that enables their application
to complex large-scale engineering models.

The efficiency of AD can be increased depending on the type of the problem, and the
sparsity pattern of the Jacobian matrix. For example, if the number of input data is relatively
small, and number of output data is large, the forward mode of differentiation presents the
most efficient way with regard to computational time and storage burdens. Conversely, the
reverse mode of differentiation suits problems with many input data and few output data. If
the Jacobian matrix is sparse, one can propagate sparse derivative vectors [4] or compress the
Jacobian using coloring techniques [3, 7].

This manuscript addresses the need for a general approach when both the numbers of
input and output data are too large to render either the forward and/or the reverse modes com-
putationally feasible, and when the Jacobian matrix is generally dense. Proposed is a new
approach that utilizes the Efficient Subspace Method (ESM) to address these situations [2].
The sole requirement for this approach is that the Jacobian matrix be ill-conditioned, which
is generally considered an unfavorable situation. ESM exploits the ill-conditioning of the Ja-
cobian matrix to reduce the number of runs of the forward and reverse modes to a minimum.
We will show that the number of runs is proportional to the numerical rank of the Jacobian
matrix which is determined as part of the analysis. In this approach, the Jacobian matrix of the
engineering model with m output data and » input data is approximated by matrices of lower
dimensions by means of matrix revealing decompositions. These decompositions are obtained
by ESM via a series of randomized matrix-vector products of the form: Jq, and J” w, where
r is the numerical rank of the Jacobian matrix J. Note that the size of the Jacobian matrix
is dictated by the size of the input and output data streams, however the sizes of the smaller
matrices characterizing the low rank decomposition are determined by the numerical rank of
the Jacobian matrix, which is found to be related to the modeling strategy, physics of the en-
gineering system, and the degree of correlation amongst the input data, which can be quite
significant. This follows, since for many important engineering applications, the input data to
a computational model are the output from other preprocessor codes.

Earlier work by the first author has demonstrated that for typical nuclear reactor models,
the numerical rank is many orders of magnitude smaller than the size of the input and output
data streams, i.e. r < m,n [8], and can be estimated effectively via ESM (for typical nuclear
reactor core simulation: n ~ 106, m=10%, and r ~ 102). This large rank reduction is a result
of the so-called multi-scale phenomena modeling (MSP) strategy on which nuclear reactor
calculations are based. Nuclear calculations are but an example of the application of MSP
to engineering systems that involve large variations in both time and length scales. In fact,
many of today’s important engineering and physical phenomena are modeled via MSP, e.g.
weather forecast, geophysics, materials simulation. To accurately model the large time and
scale variations, MSP utilizes a series of models varying in complexity and dimensionality.
First, high resolution (HR) microscopic models are employed to capture the basic physics
and the short scales that govern system behavior. The HR models are then coupled with low
resolution (LR) macroscopic models to directly calculate the macroscopic system behavior,
which is often of interest to system designers, operators, and experimentalists. The coupling
between the different models results in a gradual reduction in problem dimensionality thus
creating large degrees of correlations between different data in the input and output (I/O) data
streams. ESM exploits this situation by treating the I/O data in a collective manner in search
of the independent pieces of information. The term ‘Degree of Freedom’ (DOF), adopted in
many other engineering fields, is used to denote an independent piece of information in the I/O
stream. An active DOF denotes a DOF that is transferred from a higher to a lower resolution
model, and an inactive DOF denotes a DOF that is thrown out. ESM replaces the original I/O
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data streams by their corresponding active DOFs. The number of active DOFs can be related
to the numerical rank of the Jacobian matrix. The reader is referred to a previous publication
for a full treatment of ESM theory [2].

2 Methodology

Let the engineering model of interest be described by a vector valued function:
y=0(x) M

where y € R, and x € R". The objective of this manuscript is to minimize the computational
and storage overheads required to calculate the entire Jacobian matrix J to a prescribed error
tolerance limit. The elements of the Jacobian matrix contain derivative information that is
given by:

_ oy

Jij - (9Xj

(@)
Eq. 2 describes the sensitivity of the ith output response with respect to the jth input model
parameter. For typical nuclear reactor calculations, earlier work has revealed that a) model
input data (also referred to as model input parameters) number in the millions. For example,
the few-group cross-sections (cross-sections characterize the probability of neutrons interac-
tion with matter), input to a core simulator are often functionalized in terms of history effects,
and various instantaneous core conditions thus result in a very large input data stream, and b)
model output responses number in the hundreds of thousands, including in-core instrumenta-
tions’ responses, core power distribution, and various thermal limits, thus resulting in a very
large output data stream. The numerical rank of the associated Jacobian matrix has been shown
to be much smaller, i.e. of the order of 10% only. A low rank matrix suggests a matrix revealing
decomposition of the form:

J=usv? 3)

where U € RV € R"™" and § € R"™™". To simplify the derivation, we select S to be diag-
onal, and both U and V orthonormal, thus yielding the singular value decomposition (SVD)
of the matrix J. Note that the columns of U span a subspace of dimension r that belongs
to the output responses space of dimension m, i.e. R(U) € R", and dim(R(U)) = r, where
R(-) denotes the range of a matrix operator, and dim(-) is the dimension of a subspace which
represents the maximum number of linearly independent vectors that belong to a subspace.
Similarly: R(V) € R”, and dim(R(V)) =r.

Two important observations can be made about the decomposition in Eq. 3: (a) for any
vector v, such that: Vv =0, i.e. v is orthogonal to the r columns of the matrix V, the fol-
lowing condition is true: Jv = 0, i.e. a change of model input parameters along the vector v
does not lead to any change in model output responses, i.e. the sensitivity of model responses
with respect to the direction v is zero. In other words, this vector matrix product carries no
derivative information and hence need not be evaluated. In our notations, any vector satisfying
this condition is called an input data inactive DOF. For a matrix with rank r, there are n —r
inactive DOFs. (b) Similarly, for any vector u, such that: U7 u = 0, the following condition is
satisfied: JTu = 0. Again, this matrix-transpose-vector product produces the null vector and
hence need not be evaluated. There are m — r output data inactive DOFs.

Based on these two observations, it is useful to seek an approach that evaluates the effect of
the matrix J on the active input and output data DOFs only. Clearly, this approach is challenged
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by the lack of knowledge of the matrices U and V. These matrices can only be calculated if
the matrix J is available a priori. ESM can approximate these matrices by using a series of r
matrix-vector and matrix-transpose-vector products only.

The mechanics of ESM are based on the following three theorems:

Theorem 1. Let J € R™*" be a pre-defined matrix (representing an unknown Jacobian matrix
of a computer code) with rank r < min(m,n). Let J = URVT be a matrix revealing decompo-
sition as described earlier. Given Q € R™! a matrix of randomly generated entries, then Q
has a unique decomposition such that:

0=0"+0",

where
rank(Q%) =1

and

R(QY) CR(V) forl <r
R(QPY=R(V) for I > r

Theorem 2. Let D = JQ (action of AD forward mode), then:
rank(D) =1,
and

R(D) CR(U) forl<r
R(D)=R(U) forl >r

Theorem 3. Given U € R™*!, a matrix of randomly generated entries, and an arbitrary matrix
J* such that: R(J*) = R(V), let Z=J*U,Z € R™*! then:

rank(Z) =1,

and

=
N
N

R(V)forl<r
R(V) forl>r

=
N
I

These theorems guarantee that one can gradually build a basis for the subspaces compris-
ing the active DOFs in the input and the output data streams, i.e. R(V), and R(U ), respectively.
Further, theorem 3 provides enough flexibility in the choice of the operator J* used to build
the input data active DOFs subspace, R(V). A simple choice is J* = J7 which reduces to the
direct implementation of AD reverse mode. As will be described later, this flexibility will sug-
gest means of reducing the computational overhead required to execute the AD reverse mode,
which is often more expensive than the AD forward mode.

Instead of reproducing the proofs for these theorems which may be found elsewhere [1], it
will be instructive to illustrate the mechanics of these theorems by introducing a few simplify-
ing assumptions that will be relaxed later. Let us assume that the rank r and the subspace R(V)
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associated with the Jacobian matrix J are known a priori. Let the subspace R(V) be spanned
by the columns of an orthonormal matrix Q, such that: O = [q1q3.--.qr], qiqu = §;j, and
R(V) = R(Q). Note that only the subspace R(V) is assumed known; identifying the columns
of the matrix V represents the target of our analysis. Now, since Q is orthonormal and its
columns span R(V), one can write:

o=vP' )
where P € R"™" is a full rank orthonormal matrix, also known as a rotation operator, i.e. it ro-
tates the columns of the matrix Q to line up with the columns of the matrix V. In this analysis,
Q is selected arbitrarily, therefore V can be extracted from Eq. 4, once P is determined, ac-
cording to: V = QP. Now, assuming that Eq. 1 is implemented as a computer program and AD
has been applied yielding a differentiated program with a capability to calculate matrix-vector
products, one can evaluate the matrix D of output responses:

D=JQ=[Iq1Jqz.-.Jqr] ©)
Substituting for J and Q from Eq. 3 and Eq. 4 yields:
D=USPT. (6)

This is the SVD of the matrix D. Hence, if one calculates the SVD of the matrix D, one can
reconstruct the matrix J as follows:

J=(DP)(oP)T =UsVT. %)

Therefore, one can evaluate the entire Jacobian matrix with only r matrix-vector products
(Eq. 5) and an SVD operation for a matrix of r columns only (Eq. 6), given that one knows a
priori the subspace R(V) and its dimension r.

Now we turn to relaxing these two assumptions. According to Theorem 3, the subspace
R(V) may be identified by using the reverse differentiation mode of AD, by making a simple
choice of J* such that: J* = JT . In this case, a basis for the R(V') subspace can be constructed
in the following manner: a) Build a matrix U of randomly generated entries, where [ < r, and
perform the following matrix-vector products using the AD reverse mode:

z=JT0
b) Calculate a QR decomposition of the matrix Z:
Z=0R

where Q € R”*/ is an orthonormal matrix of rank /, such that: R(Q) = R(Z). For a random U,
theorem 3 asserts that:

R(Q) SRUT) =R(V),
and forl >r

R(Q) =R(V).

Therefore, one can build a low rank approximation to a Jacobian matrix by: a) First, using the
AD reverse mode to construct a basis for the subspace R(V). This subspace is constructed by
performing matrix-transpose-vector products until the entire subspace is spanned. b) Second,
using the AD forward mode, one can identify the three matrices of the SVD in Eq. (2). Once
SVD is calculated, one can estimate the J;; according to:

r
Jij= E Uik SKV jk-
k=1
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Now we would like to comment on the choice of the matrix J*. As illustrated above, the
primary function of J* is to construct an arbitrary basis for the subspace R(V); once R(V) is
identified, the forward mode can be used to estimate the entire Jacobian matrix. Therefore,
any matrix that has the same range as the matrix J7 can be used to build R(V). Having this
insight can help one make an educated choice of the matrix J* for one’s particular application
of interest. To illustrate this: consider that, in most computer codes, the Jacobian matrix J
comprises a series of calculational stages, where the output of one stage feeds the input to the
next stage. Mathematically, this can be described using the chain rule of differentiation:

J=N1Jr... Iy
And the transposed Jacobian matrix becomes:
JT=05..5 0

Now, each J; represents the Jacobian of a calculational stage, and { J;} are generally expected
to vary in dimensionality, sparsity pattern, and numerical rank. One can take advantage of
this situation by dropping all matrices that do not contribute to reducing the overall rank of
the Jacobian matrix. This follows since the range of the overall transposed-Jacobian matrix
satisfies the following relation:

RUTY=RUL...JIJTyC...cRUEIT) CRUT)

Therefore, if say, the rank of the matrix JIT is comparable to the overall rank of the Jacobian
matrix (ranks can be determined effectively via AD forward mode as guaranteed by theo-
rem 2), one can use J* = JIT and save the additional effort required to build a reverse AD
mode for the entire Jacobian matrix.

3 Case Study

This section describes a numerical experiment conducted to illustrate the mechanics of the
proposed approached. Consider the diffusion equation for mono-energetic neutrons in two-
dimensional non-multiplying media:

—V-D(r)V®(r)+Z,(r)@(r) = S(r) 8)

where input model parameters are the diffusion coefficient, D, the absorption cross-section,
2,, and the external neutron source, S; and r denotes model parameters’ variations with space.
The solution to this equation gives the neutron flux, @.

This problem can be solved using a Galerkin formulation of the finite element method [10].
In this method, the flux solution is expanded along a basis of finite dimensional subspace of
an admissible Hilbert space, denoted by the ‘solution subspace’. Further, the residual error
resulting from this approximation is required to be orthogonal to another Hilbert subspace,
denoted by the ‘residual subspace’. Usually, the two subspaces are selected to coincide with
each other. Mathematically, the flux solution @ (r) calculated by the Galerkin approach may
be described as follows. Let the Galerkin flux solution and residual be given by:

G
9(r) = yo+ ) Pg(r) ©)
g=1

e(r) =S(r)—2, (r)tDG(r) +V. D(r)V(DG(r) (10)
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where the solution and residual subspaces are spanned by the set of functions, v (r) |§:0, and
G+ 1 is the dimension of each of these subspaces. The following condition is also satisfied:

(e(r),yg(r)) =0, g=0,1,...G

where (-,-) denotes inner product over the phase space. Finally, some boundary conditions are
imposed to get closure relations:

=Y(r) (1)

where Y'(r) is a function defined on the boundary B.

For typical nuclear reactor calculations, Eq. 8 through Eq. 11 are solved over a spatial grid
that spans the entire reactor core. In this regard, a typical sensitivity study would involve the
estimation of the Jacobian matrix relating first order changes in the flux solution to variations
in input model parameters.

For this problem, a mesh size of N = 10 in both the x- and y-directions was selected, yield-
ing a total of N2 = 100 mesh points. The total number of input model parameters, including
diffusion coefficient, absorption cross-section and source term, is 3N2, each parameter evalu-
ated at N2 grid points. The total number of output responses is N2, representing flux solution
at the same number of grid points. Therefore the Jacobian matrix is expected to be of dimen-
sions: J € RN *3V* o construct the entire Jacobian matrix, the direct forward and reverse AD
modes of differentiation will require 3N 2 and N2 model evaluations, respectively. For com-
plex nuclear calculations, the computing times required by such model re-evaluations severely
restrict the scope of sensitivity analysis. In practice, the core designer is restricted to perform
the sensitivity study for a few number of output responses, i.e. flux solutions at few grid points,
and a few number of input parameters that are judged to be of most importance.

We selected the basis functions spanning the ‘solution subspace’ and the ‘residual sub-
space’ such that

U{g(%)’) = fl(x) X fk(y)7

where [ =1,...,L;k=1,...,K; g=0,1,...,(l = 1)K +k,...,LK; f;(x) and f;(y) are poly-
nomials of order / and k, respectively; and vy is a constant function. These basis functions are
often selected to satisfy special orthogonality properties to facilitate the process of obtaining
the flux solution. For more details on the constructions of these basis functions, the reader is
referred to the relevant literature [6]. For this study, we selected L = K =4, i.e. a total of 4
polynomials in each direction and a constant term, the dimension of the ‘solution subspace’
is G+ 1 = 17. Therefore, the rank of the Jacobian matrix is expected to be 17 as well. This
follows, since all possible neutron flux variations resulting from input model parameters vari-
ations must belong to the ‘solution subspace’.

Accordingly, the approach proposed in this paper, Eq. 4 through Eq. 7, was implemented
by gradually increasing the size of the random subspace until » = 17, above which the rank
did not increase. The Jacobian matrix was constructed both using the proposed approach with
r forward and r reverse model evaluations using AD. In addition, a full sensitivity study was
performed by running the forward mode 3N? times to construct the entire Jacobian matrix.
Figures 1 through 4 plot the variations of flux solution with respect to 1% perturbation in the
absorption cross-section, and the source term at two random grid points. In these figures, the
nodes indices are in the natural order, i.e. ¢ =i+ (j — 1) x I. Each of these figures compares
the AD forward mode obtained by 3N 2 model re-evaluations, and the proposed approach with
only 27 model re-evaluations.
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19% Source perturbation at node (I=1,J=2)
0.02 T T T T T T T

Forward AD
#* Low-Rank AD

0018 4

0.016

0.014

0.012

Relative flux perturbation

0.008

L L L L L
10 20 30 40 50 60 70 80 90 100
Node Index

0.006 L L L L
[

Fig. 1. First order flux perturbation due to source perturbations
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Fig. 2. First order flux perturbation due to source perturbations

4 Conclusions and Future Work

This work proposed a new approach to increase the efficiency of automatic differentiation
calculations by exploiting the low rank nature of the Jacobian matrices often encountered with
most very large and complex computer models. The approach requires » matrix-transpose-
vector products evaluated by the AD reverse mode, r matrix-vector products evaluated by the
AD forward mode, and a QR and an SVD factorization both involving matrices with r columns
only. The full Jacobian matrix may subsequently be calculated from the resulting QR and SVD
matrices. For an exactly rank-deficient Jacobian matrix with rank r, the proposed approach
guarantees that the reconstructed Jacobian matrix is exactly equal to the full Jacobian matrix
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Fig. 3. First order flux perturbation due to absorption cross-section perturbations
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Fig. 4. First order flux perturbation due to absorption cross-section perturbations

evaluated using AD with n forward mode runs, or m reverse mode runs, where n and m are the
number of input and output data, respectively.

In this work, the rank of the Jacobian matrix was upper-bounded by the size of the
Galerkin’s ‘solution subspace’ implying that the Jacobian matrix is exactly rank-deficient,
and that is it has a finite number of non-zero singular values, with all the rest equal to zero. In
more general situations, all the singular values of the Jacobian matrix are not exactly equal to
zero, however they decrease rapidly to very small values. An engineering judgment must be
made regarding the appropriate cut-off on the spectrum of singular values in order to yield an
acceptable estimate for the derivatives. Future work will focus on mathematically quantifying
the error in estimating the Jacobian matrix when the smaller singular values assumed to have
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value zero. Further, we will extend the proposed methodology to estimating the higher order
derivatives for nonlinear computer models.
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